Molecular Thermodynamic Modeling of Reverse Micelles and Water-in-Oil Microemulsions.

نویسندگان

  • Boris Lukanov
  • Abbas Firoozabadi
چکیده

Surfactant aggregation plays an important role in a variety of chemical and biological nanoscale processes. On a larger scale, using small amounts of amphiphiles compared to large volumes of bulk-phase modifiers can improve the efficiency and reduce the environmental impact of many chemical and industrial processes. To model ternary mixtures of polar, nonpolar, and amphiphilic molecules, we develop a molecular thermodynamic theory for polydisperse water-in-oil (W/O) droplet-type microemulsions and reverse micelles based on global minimization of the Gibbs free energy of the system. The incorporation of size polydispersity into the theoretical formulation has a significant effect on the Gibbs free energy landscape and allows us to accurately predict micelle size distributions and micelle size variation with composition. Results are presented for two sample ionic surfactant/water/oil systems and compared with experimental data. By predicting the structural and compositional characteristics of w/o microemulsions, the molecular thermodynamic approach provides an important bridge between the modeling of ternary systems at the molecular and the macroscopic level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular thermodynamic modeling of droplet-type microemulsions.

Microemulsions are nanoheterogeneous, thermodynamically stable, spontaneously forming mixtures of oil and water by means of surfactants, with or without cosurfactants. The pledge to use small volumes of amphiphile molecules compared to large amounts of bulk phase modifiers in a variety of chemical and industrial processes, from enhanced oil recovery to biotechnology, fosters continuous investig...

متن کامل

Microemulsions: Thermodynamic and Dynamic Properties

Mixing two immiscible liquids (such as oil and water) using emulsifier and energy inputs has been the matter of study for decades. In early 1890’s extensive work have been carried out on macroemulsions (i.e. oil dispersed in water in the form of fine droplets or vice versa) (Becher, 1977) and several theories and methods of their formation have been vastly explored (Lissant 1976 and 1984). Howe...

متن کامل

Synthesis of Esters Catalyzed by Lipases in Water- in-Oil Microemulsions

There are two basic advantages in using enzymes as catalysts in organic media instead of aqueous solutions. First, organic solvents favor the solu­ bility of hydrophobic substrates and, second, the presence of such solvents shifts the thermodynamic equilibrium of condensation/hydrolysis reactions in favor of the desired product. Different approaches have been proposed to facilitate the reversal...

متن کامل

Reverse micelles: inert nano-reactors or physico-chemically active guides of the capped reactions.

Reverse micelles present self-assembled multi-molecular entities formed within specific compositional ranges of water-in-oil microemulsions. The structure of a reverse micelle is typically represented as nano-sized droplet of a polar liquid phase, capped by a monolayer of surfactant molecules, and uniformly distributed within a non-polar, oil phase. Although their role in serving as primitive m...

متن کامل

Liquid-liquid extraction of enzymatically synthesized functional RNA oligonucleotides using reverse micelles with a DNA-surfactant.

We successfully implemented solvent extraction of short, single-stranded RNA using reverse micelles (water-in-oil microemulsions) with a DNA-surfactant. A thrombin-binding RNA aptamer was enzymatically synthesized and purified by extraction using the reverse micellar system. The extracted RNA aptamer retained thrombin-binding activity after the extraction procedure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 13  شماره 

صفحات  -

تاریخ انتشار 2016